## SOME 4-SUBSTITUTED 1-(3-PYRIDYLMETHYL)PIPERAZINES WITH ANTIHISTAMINE ACTIVITY

Vojtech KMONiCEK ${ }^{a}$, Martin VALCHAR ${ }^{b}$ and Zdenek Polivka ${ }^{a}$
${ }^{a}$ Research Institute for Pharmacy and Biochemistry,
13060 Prague 3, The Czech Republic
${ }^{\text {b }}$ State Institute for the Drug Control,
11000 Prague 10, The Czech Republic

Received July 1, 1994
Accepted July 28, 1994

Several compounds derived from nicotinic acid were prepared within a more extensive programme aiming at the synthesis of new substances with expected antihistamine and antidepressant activity. Some of these compounds display certain structural resemblance with the antidepressant agent piberaline ${ }^{1}$ (EGYT 475, Trelibet ${ }^{\circledR}, I$ ) and its analogues ${ }^{2}$. The products were used as intermediates for the synthesis of further compounds


$I I, \quad \mathrm{X}=\mathrm{CO}$
III, $\quad \mathrm{X}=\mathrm{CH}_{2}$
In formulae $I I$ and $I I I$ :
$a, \mathrm{R}=\mathrm{H} ; b, \mathrm{R}=3-\mathrm{Cl} ; c, \mathrm{R}=3-\mathrm{CF}_{3} ; d, \mathrm{R}=4-\mathrm{OCH}_{3}$


| $I V$, | $\mathrm{X}=\mathrm{CO}$ | In formulae $I V$ and $V:$ |
| :--- | :--- | :--- |
| $V$, | $\mathrm{X}=\mathrm{CH}_{2}$ | $a, \mathrm{R}=\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5} ; b, \mathrm{R}=\mathrm{CH}_{2}\left(4-\mathrm{F}-\mathrm{C}_{6} \mathrm{H}_{4}\right) ; c, \mathrm{R}=\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} ;$ |
| $V I$, | $\mathrm{X}=\mathrm{CH}_{2} \mathrm{CO}$ | $d, \mathrm{R}=\mathrm{CH}\left(4-\mathrm{F}-\mathrm{C}_{6} \mathrm{H}_{4}\right)_{2} ; e$, 2-pyrimidinyl; $f, \mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CONH}_{2}$ |

and most of them were subjected to pharmacological testing. Substituted nicotinic acid piperazides $I I a$ - IId and $I V a-I V e$ were obtained by reactions of nicotinoyl chloride (prepared in situ) with the correspondingly substituted piperazines. Reduction of the piperazides $I I a-I I d$ and $I V a-I V d$ with diborane "in situ" in tetrahydrofuran afforded corresponding 1-substituted 4-(3-pyridylmethyl)piperazines IIIa -IIId and Va $-V d$. Whereas the alkylation of 1-(2-pyrimidinyl)piperazine ${ }^{3}$ with 2-(chloromethyl)pyridine ${ }^{4}$ in ethanol in the presence of triethylamine resulted in compounds $V e$, compound $V f$ was obtained by the addition reaction of 1-(3-pyridylmethyl)piperazine ${ }^{5}$ to acrylamide. The piperazides VIe and VIf were prepared by reactions of 2-(3-pyridyl)acetic acid ${ }^{6}$ with 1-(2-pyrimidinyl)piperazine or 3-(1-piperazinyl)propionamide ${ }^{7}$ in $\mathrm{N}, \mathrm{N}$-dimethylformamide in the presence $1,1^{\prime}$-carbonyldiimidazole. A similar procedure starting from nicotinic acid afforded the piperazide IVf.

Compounds $V c$ and $V d$ showed significant affinity for the histamine $\mathrm{H}_{1}$-receptors (inhibition of binding of $2 \mathrm{nmol} / 1\left[{ }^{3} \mathrm{H}\right]$ mepyramine in membranes from the rat brain: $\left.V c, \mathrm{IC}_{50}=28 \mathrm{nmol} / \mathrm{l} ; V d, \mathrm{IC}_{50}=148 \mathrm{nmol} / \mathrm{l}\right)$. They also proved active in test of histamine aerosol in guinea pigs $\left(\mathrm{PD}_{50}=4.1 \mathrm{mg} / \mathrm{kg}\right.$ p.o. for compound $V c$ and 2.4 for compound $V d$ ). Results of a more detailed pharmacological testing of these compounds will be published elsewhere.

## EXPERIMENTAL

The melting points were determined with the Mettler FP-5 melting point recorder or on the Kofler block. The analytical samples were dried in vacuo of about 40 Pa at a room temperature or at a suitably elevated temperature. UV spectra (in methanol, $\lambda_{\text {max }}$ in $\mathrm{nm}(\log \varepsilon)$ ) were recorded with the Unicam SP 8000 spectrophotometer; IR spectra with Unicam SP 2000 or Perkin-Elmer 298 spectrophotometers, NMR spectra on a Tesla BS $567 \mathrm{~A}\left({ }^{1} \mathrm{H}\right.$ at $100 \mathrm{MHz},{ }^{13} \mathrm{C}$ at 25.14 MHz$)$, and Varian XL-200 ( ${ }^{1} \mathrm{H}$ at 200 MHz ), chemical shifts are given in ppm ( $\delta$-scale), coupling constants $(J)$ in Hz. The mass spectra were measured on a Varian MAT-44S (GC-MS) spectrometer. The homogeneity of the products and composition of the mixtures were checked by thin-layer chromatography (TLC) on silica gel (Silufol $\mathrm{UV}_{254}$ ). Preparative chromatographic separations were carried out on columns of silica gel (Fluka 60). The extracts were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ or $\mathrm{K}_{2} \mathrm{CO}_{3}$ and evaporated under reduced pressure on a rotary evaporator.

General Procedure for Preparation of Amides IIa - IId and IVa - IVe
A suspension of nicotinic acid $(9.8 \mathrm{~g}, 0.08 \mathrm{~mol})$ in dichloromethane ( 70 ml ) was treated with pyridine ( $6.3 \mathrm{~g} ; 6.2 \mathrm{ml} ; 0.08 \mathrm{~mol}$ ) and then under stirring and cooling to $0-5{ }^{\circ} \mathrm{C}$ dropwise with $\mathrm{SOCl}_{2}$ $(9.5 \mathrm{~g} ; 5.7 \mathrm{ml} ; 0.08 \mathrm{~mol})$ over 20 min . The mixture was stirred at the temperature indicated for further 20 min , slowly warmed to $40^{\circ} \mathrm{C}$ and stirred for 20 min . The solution obtained was cooled to $0^{\circ} \mathrm{C}$ and added dropwise over 20 min to a solution of 0.08 mol of the corresponding piperazine $(0.08 \mathrm{~mol})$ and pyridine $(6.3 \mathrm{~g} ; 6.2 \mathrm{ml} ; 0.08 \mathrm{~mol})$ in dichloromethane $(50 \mathrm{ml})$ at $0-5{ }^{\circ} \mathrm{C}$. It was then refluxed for 2 h under stirring. After cooling, the solution was washed with $50 \% \mathrm{NaOH}(50 \mathrm{ml})$, water ( $2 \times 20 \mathrm{ml}$ ), dried and evaporated.

1-Phenyl-4-nicotinoylpiperazine (IIa). Processing of 1-phenylpiperazine ( 13.0 g ) by the general procedure gave $18.8 \mathrm{~g}(88 \%)$ of the crude base IIa which was transformed to the dihydrochloride,
m.p. $179-182{ }^{\circ} \mathrm{C}$ (methanol-ether). IR spectrum: 697, 769 ( 5 adjacent Ar-H); $1489,1539,1600$, $3025,3040(\mathrm{Ar}) ; 1643(\mathrm{ArCON}-\mathrm{R}) ; 2000,2118,2320\left(\mathrm{NH}^{+}\right) .{ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CD}_{3} \mathrm{SOCD}_{3}\right)$ : $9.10 \mathrm{bs}, 1 \mathrm{H}(\mathrm{H}-2) ; 9.00 \mathrm{bd}, 1 \mathrm{H}(J=5.0, \mathrm{H}-6) ; 8.56 \mathrm{bd}, 1 \mathrm{H}(J=8.0, \mathrm{H}-3) ; 8.05 \mathrm{dd}, 1 \mathrm{H}(J=8.0$, $\left.J^{\prime}=5.0 \mathrm{H}-5\right) ; 7.40 \mathrm{~m}, 5 \mathrm{H}(\mathrm{Ar}-\mathrm{H}) ; 3.20-4.00 \mathrm{bm}, 8 \mathrm{H}\left(\mathrm{H}-2^{\prime}, \mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}, \mathrm{H}-6^{\prime}\right)$. For $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}$ (340.3) calculated: $56.48 \% \mathrm{C}, 5.63 \% \mathrm{H}, 20.84 \% \mathrm{Cl}, 12.35 \% \mathrm{~N}$; found: $56.84 \% \mathrm{C}, 5.82 \% \mathrm{H}, 20.73 \% \mathrm{Cl}$, $12.66 \% \mathrm{~N}$.

1-(3-Chlorophenyl)-4-nicotinoylpiperazine (IIb). Similar processing of 1-(3-chlorophenyl)piperazine $^{8}(15.7 \mathrm{~g})$ gave 20.5 g oily base $I I b$, which was transformed to the dihydrochloride. Crystallization from ethanol afforded $11.5 \mathrm{~g}(47 \%)$ of $I I b$ dihydrochloride melting at $168-170{ }^{\circ} \mathrm{C}$. IR spectrum : 690, 800 (3 adjacent Ar-H); 886, 908 (solitary Ar-H); 1 485, 1 500, 1 550, 1 594, 1 604, $3030(\mathrm{Ar}) ; 1649\left(\mathrm{ArCONR}_{2}\right) ; 1$ 995, 2 105, $2370,2495\left(\mathrm{NH}^{+}\right) ; 3400\left(\mathrm{H}_{2} \mathrm{O}\right)$. UV spectrum: 253 (4.26); 290 infl. (3.31). ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CD}_{3} \mathrm{SOCD}_{3}\right): 9.88 \mathrm{bs}, 1 \mathrm{H}(\mathrm{H}-1) ; 9.05 \mathrm{bd}, 1 \mathrm{H}(J=5.0$, $\mathrm{H}-6) ; 8.59 \mathrm{bm}, 1 \mathrm{H}(\mathrm{H}-4) ; 8.20 \mathrm{~m}, 1 \mathrm{H}(\mathrm{H}-5) ; 7.00-7.40 \mathrm{~m}, 4 \mathrm{H}(\mathrm{Ar}-\mathrm{H}) ; 3.70 \mathrm{bm}, 4 \mathrm{H}\left(\mathrm{H}-2^{\prime}, \mathrm{H}-6^{\prime}\right)$; $3.42 \mathrm{bm}, 4 \mathrm{H}\left(\mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}\right)$. Mass spectrum, $m / z(\%): 301\left(\mathrm{M}^{+}, \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{ClN}_{3} \mathrm{O}, 7\right.$ ), 166 (86), 148 (35), 106 (24), 78 (37), 56 (100). For $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{Cl}_{3} \mathrm{~N}_{3} \mathrm{O}$ (374.7) calculated: $51.28 \% \mathrm{C}, 4.84 \% \mathrm{H}, 28.39 \% \mathrm{Cl}, 11.22 \%$ N ; found: $51.32 \% \mathrm{C}, 4.98 \% \mathrm{H}, 28.73 \% \mathrm{Cl}, 10.93 \% \mathrm{~N}$.

1-(3-Trifluoromethylphenyl)-4-nicotinoylpiperazine (IIc). Similar processing of 1-(3-trifluoromethyl)piperazine ${ }^{9}(17.3 \mathrm{~g})$ gave 20.5 g oily base which afforded $21.8 \mathrm{~g}(65 \%)$ of IIc dihydrochloride hemihydrate, m.p. $184-186^{\circ} \mathrm{C}$. IR spectrum: 693, 814 (3 adjacent Ar-H); 900, 909 ( 1 solitary Ar-H); 1 122, 1 171, $1323\left(\mathrm{ArCF}_{3}\right) ; 1582,1547,1604,3015,3028,3050(\mathrm{Ar}) ; 1650\left(\mathrm{ArCONR}_{2}\right)$; 1 980, 2 100, $2370,2475\left(\mathrm{NH}^{+}\right) ; 3470,3520\left(\mathrm{H}_{2} \mathrm{O}\right) .{ }^{1} \mathrm{H}$ NMR spectrum (base, $\left.\mathrm{CD}_{3} \mathrm{SOCD}_{3}\right): 8.70 \mathrm{~m}$, $2 \mathrm{H}(\mathrm{H}-2, \mathrm{H}-6) ; 7.80 \mathrm{~m}, 1 \mathrm{H}(\mathrm{H}-4) ; 7.00-7.50 \mathrm{~m}, 5 \mathrm{H}(\mathrm{H}-5, \mathrm{Ar}-\mathrm{H}) ; 3.80 \mathrm{bm}, 4 \mathrm{H}(\mathrm{Ar}-\mathrm{H}) ; 3.42 \mathrm{bm}$, 4 H (H-2', H-6'); $3.30 \mathrm{bm}, 4 \mathrm{H}\left(\mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}\right)$. Mass spectrum, $m / z(\%): 335\left(\mathrm{M}^{+}, \mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}, 14\right)$, 316 (3), 229 (7), 200 (100), 188 (7), 172 (24), 148 (36), 145 (15), 106 (34). For $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}+$ $0.5 \mathrm{H}_{2} \mathrm{O}(417.3)$ calculated: $48.95 \% \mathrm{C}, 4.59 \% \mathrm{H}, 17.00 \% \mathrm{Cl}, 13.66 \% \mathrm{~F}, 10.07 \% \mathrm{~N}$; found: $49.11 \% \mathrm{C}$, $4.50 \% \mathrm{H}, 17.36 \% \mathrm{Cl}, 13.51 \% \mathrm{~F}, 10.11 \% \mathrm{~N}$.

1-(4-Methoxyphenyl)-4-nicotinoylpiperazine (IId). Similar processing of 1-(4-methoxyphenyl)piperazine ${ }^{10}(15.4 \mathrm{~g})$ resulted in $19.9 \mathrm{~g}(84 \%)$ of crystalline $I I d$, m.p. $85-87{ }^{\circ} \mathrm{C}$. Analytical sample melted at $96-98^{\circ} \mathrm{C}$ (benzene-ether). IR spectrum: 710, 800, 885, 827 ( 3 and 1 adjacent and solitary Ar-H); 1 013, 1 037, 1248 (ArOMe); 1 511, 1 589, 3 030, 3050,3075 , (Ar); 1622 (ArCONR 2 ); $3420\left(\mathrm{H}_{2} \mathrm{O}\right)$. UV spectrum: $241(4.23) ; 289(3.30) .{ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right): 8.70 \mathrm{~m}, 2 \mathrm{H}(\mathrm{H}-2$, $\mathrm{H}-6) ; 7.32 \mathrm{bd}, 1 \mathrm{H}(\mathrm{H}-4) ; 7.40 \mathrm{bdd}, 1 \mathrm{H}(\mathrm{H}-5) ; 6.90 \mathrm{~s}, 4 \mathrm{H}(\mathrm{Ar}-\mathrm{H}) ; 3.90 \mathrm{bs}$ and $3.65 \mathrm{bs}, 2 \times 2 \mathrm{H}$ (H-2' and H-6'); $3.78 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{CH}_{3} \mathrm{O}\right) ; 3.10 \mathrm{bs}, 4 \mathrm{H}\left(\mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}\right)$. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right): 167.69 \mathrm{~s}$ (C=O); 154.55 s (C-4 of aryl); 150.89 d (C-6); 147.97 d (C-2); 145.06 s (C-1 of aryl); 135.05 d (C-4); $131.46 \mathrm{~s}(\mathrm{C}-3) ; 123.47 \mathrm{~d}(\mathrm{C}-5) ; 118.99 \mathrm{~d}(\mathrm{C}-2$ and $\mathrm{C}-6$ of aryl); $114.51 \mathrm{~d}(\mathrm{C}-3$ and $\mathrm{C}-5$ of aryl); $55.50 \mathrm{q}\left(\mathrm{OCH}_{3}\right) ; 51.17 \mathrm{t}\left(\mathrm{C}-3^{\prime}, \mathrm{C}-5^{\prime}\right) ; 48.21 \mathrm{bt}$ and 42.96 bt (C-2', C-6'). For $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2}+0.5$ $\mathrm{H}_{2} \mathrm{O}$ (306.4) calculated: $66.64 \% \mathrm{C}, 6.58 \% \mathrm{H}, 13.71 \% \mathrm{~N}$; found: $66.83 \% \mathrm{C}, 6.35 \% \mathrm{H}, 13.63 \% \mathrm{~N}$.

1-Benzyl-4-nicotinoylpiperazine (IVa). The general procedure applied to 1-benzylpiperazine ( 14.1 g ) gave $18.2 \mathrm{~g}(81 \%)$ of crystalline base $I V a$, m.p. $74-76{ }^{\circ} \mathrm{C}$ (cyclohexane). ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right): 8.70 \mathrm{~m}, 2 \mathrm{H}(\mathrm{H}-2, \mathrm{H}-6) ; 7.76 \mathrm{~m}, 1 \mathrm{H}(\mathrm{H}-4) ; 7.40 \mathrm{~m}, 1 \mathrm{H}(\mathrm{H}-5) ; 7.32 \mathrm{~s}, 5 \mathrm{H}(\mathrm{Ar}-\mathrm{H}) ; 3.80 \mathrm{bm}$, 2 H and $3.45 \mathrm{bm}, 2 \mathrm{H}\left(\mathrm{H}-2^{\prime}, \mathrm{H}-6^{\prime}\right) ; 3.55 \mathrm{~s}, 2 \mathrm{H}\left(\mathrm{CH}_{2} \mathrm{Ph}\right) ; 2.50 \mathrm{bs}, 4 \mathrm{H}\left(\mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}\right) .{ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right): 167.69 \mathrm{~s}(\mathrm{C}=\mathrm{O}) ; 150.81 \mathrm{~d}(\mathrm{C}-1) ; 148.05 \mathrm{~d}(\mathrm{C}-6) ; 137.51 \mathrm{~s}(\mathrm{C}-1$ of benzyl); 135.05 d (C-4); 131.76 s (C-3); 129.15 d (C-3 and C-5 of benzyl); 128.40 d (C-2 and C-6 of benzyl); 127.36 d (C-4 of benzyl); $123.47 \mathrm{~d}(\mathrm{C}-5) ; 62.82 \mathrm{t}\left(\mathrm{CH}_{2} \mathrm{Ph}\right) ; 52.96 \mathrm{t}\left(\mathrm{C}-3^{\prime}, \mathrm{C}-5^{\prime}\right) ; 47.73 \mathrm{t}$ and $42.2 \mathrm{t}\left(\mathrm{C}-2^{\prime}\right.$, C-6'). For $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}$ (281.4) calculated: $72.57 \% \mathrm{C}, 6.81 \% \mathrm{H}, 14.94 \% \mathrm{~N}$; found: $72.34 \% \mathrm{C}, 6.87 \% \mathrm{H}$, $14.74 \% \mathrm{~N}$.

1-(4-Fluorobenzyl)-4-nicotinoylpiperazine (IVb). Similar processing of 1-(4-fluorobenzyl)piperazine ${ }^{11}(15.5 \mathrm{~g})$ afforded $12.3 \mathrm{~g}(82 \%)$ of oily $I V b$ which was converted to the dihydrochloride, m.p.
$244-246{ }^{\circ} \mathrm{C}$ (ethanol-water). IR spectrum: 685, 770, 821, 831, 899 (Ar-H); 1510, 1601,3000 , 3 040, 3075 (Ar); $1629\left(\mathrm{ArCONR}_{2}\right) ; 1$ 995, 2 110, 2 385, 2 608, $2680,2710\left(\mathrm{NH}^{+}\right) ; 3$ 320, 3440 $\left(\mathrm{H}_{2} \mathrm{O}\right) .{ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CD}_{3} \mathrm{SOCD}_{3}\right): 8.90 \mathrm{~m}, 2 \mathrm{H}(\mathrm{H}-2, \mathrm{H}-6) ; 8.36 \mathrm{bd}, 1 \mathrm{H}(J=9.0, \mathrm{H}-4) ; 7.90 \mathrm{dd}$, $1 \mathrm{H}\left(J=9.0, J^{\prime}=5.0, \mathrm{H}-5\right) ; 7.78 \mathrm{dd}, 2 \mathrm{H}\left(J(\mathrm{HH})=9.0, J(\mathrm{HF})=5.0 \mathrm{~Hz}, \mathrm{H}-2\right.$ and $\mathrm{H}-6$ of $\left.4-\mathrm{FC}_{6} \mathrm{H}_{5}\right)$; $7.27 \mathrm{t}, 2 \mathrm{H}\left(J(\mathrm{HH})=J(\mathrm{HF})=9.0, \mathrm{H}-3\right.$ and $\mathrm{H}-5$ of $\left.4-\mathrm{FC}_{6} \mathrm{H}_{5}\right) ; 4.40 \mathrm{~s}, 2 \mathrm{H}\left(\mathrm{CH}_{2} \mathrm{Ar}\right) ; 3.70 \mathrm{bm}, 4 \mathrm{H}$ (H-2', H-6'); $3.30 \mathrm{bm}, 4 \mathrm{H}\left(\mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}\right)$. Mass spectrum, $m / z(\%): 299\left(\mathrm{M}^{+}, \mathrm{C}_{17} \mathrm{H}_{18} \mathrm{FN}_{3} \mathrm{O}\right), 193,164$, 152, 150, 109 ( $100 \%$ ), 106, 78. For $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{FN}_{3} \mathrm{O}$ (372.3) calculated: $54.84 \% \mathrm{C}, 5.42 \% \mathrm{H}, 19.05 \%$ $\mathrm{Cl}, 5.10 \% \mathrm{~F}, 11.28 \% \mathrm{~N}$; found: $54.82 \% \mathrm{C}, 5.53 \% \mathrm{H}, 19.19 \% \mathrm{Cl}, 5.21 \% \mathrm{~F}, 11.09 \% \mathrm{~N}$.

1-Benzhydryl-4-nicotinoylpiperazine (IVc). Similar processing of 1-benzhydrylpiperazine ${ }^{12}(14.1 \mathrm{~g})$ gave $14.3 \mathrm{~g}(80 \%)$ of crystalline $I V c$ melting at $131-133{ }^{\circ} \mathrm{C}$; analytical sample, m.p. $134-136{ }^{\circ} \mathrm{C}$ (ethyl acetate-light petroleum). IR spectrum: 710, 752 ( 5 adjacent Ar-H); 823 (3 adjacent H in pyridine); 896 ( 1 solitary H in pyridine); $1482,1490,1566,1583,1600,3020,3060,3080$ (Ar); 1627 ( $\mathrm{Ar}-\mathrm{CO}-\mathrm{N}$ ); UV spectrum: 254 (3.96), 224 infl . (4.22). ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right): 8.87 \mathrm{~m}$, $2 \mathrm{H}(\mathrm{H}-2, \mathrm{H}-6) ; 7.74 \mathrm{dt}, 1 \mathrm{H}(\mathrm{H}-4) ; 7.00-7.50 \mathrm{~m}, 11 \mathrm{H}(\mathrm{H}-5$ and ArH$) ; 4.28 \mathrm{~s}, 1 \mathrm{H}\left(\mathrm{CHPh}_{2}\right) ; 3.77 \mathrm{bs}$, 2 H and $3.46 \mathrm{bs}, 2 \mathrm{H}\left(\mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}\right) ; 2.44 \mathrm{bs}, 4 \mathrm{H}\left(\mathrm{H}-2^{\prime}, \mathrm{H}-6^{\prime}\right)$. For $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}$ (357.4) calculated: $77.28 \%$ C, $6.48 \% \mathrm{H}, 11.76 \% \mathrm{~N}$; found: $77.06 \%$ C, $6.61 \% \mathrm{H}, 11.61 \%$ N. Succinate hemihydrate, m.p. $176-178{ }^{\circ} \mathrm{C}$ (ethanol-ether). For $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{5}+0.5 \mathrm{H}_{2} \mathrm{O}$ (484.5) calculated: $66.92 \% \mathrm{C}, 6.24 \% \mathrm{H}$, $8.67 \% \mathrm{~N}$; found: $66.97 \% \mathrm{C}, 6.33 \% \mathrm{H}, 8.43 \% \mathrm{~N}$.

1-(4,4'-Difluorobenzhydryl)-4-nicotinoylpiperazine (IVd). Similar preparation starting from 1-(4,4'-difluorobenzhydryl)piperazine ${ }^{13}(23.1 \mathrm{~g})$ gave $30.8 \mathrm{~g}(95 \%)$ of oily base $I V e$ which was used for the further step in crude state.

1-Nicotinoyl-4-(2-pyrimidinyl)piperazine (IVe). Similar processing of 1-(2-pyrimidinyl)piperazine ${ }^{3}$ $(13.3 \mathrm{~g})$ afforded $14.9 \mathrm{~g}(69 \%)$ of crystalline IVe melting at $125-135^{\circ} \mathrm{C}$. Analytical sample, m.p. $136-138^{\circ} \mathrm{C}$ (benzene-hexane). IR spectrum: 709, 801 ( 3 adjacent and 1 solitary Ar-H); 1508,1550 , 1 583, $3038,3060,3100(\mathrm{Ar}) ; 1627\left(\mathrm{ArCONR}_{2}\right)$. UV spectrum: 242 (4.47); 295 (3.63). ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right): 8.74 \mathrm{~m}, 2 \mathrm{H}(\mathrm{H}-2, \mathrm{H}-6) ; 8.36 \mathrm{~d}, 2 \mathrm{H}(J=5.0, \mathrm{H}-3$ and $\mathrm{H}-5$ of pyrimidine $)$; $7.83 \mathrm{td}, 1 \mathrm{H}(J=7.0, \mathrm{H}-4) ; 7.40 \mathrm{~m}, 1 \mathrm{H}(\mathrm{H}-5) ; 6.58 \mathrm{t}, 1 \mathrm{H}(J=5.0, \mathrm{H}-4$ of pyrimidine $) ; 3.40-4.00 \mathrm{bm}$, $8 \mathrm{H}\left(\mathrm{H}-2^{\prime}, \mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}, \mathrm{H}-6^{\prime}\right) .{ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right): 167.92 \mathrm{~s}(\mathrm{CO}) ; 161.42 \mathrm{~s}(\mathrm{C}-1$ of pyrimidine); 157.76 d (C-3 and C-5 of pyrimidine); 150.89 d (C-6); 147.97 d (C-2); 135.05 d (C-4); 131.39 s (C-3); $123.47 \mathrm{~d}(\mathrm{C}-5) ; 110.62 \mathrm{~d}$ (C-4 of pyrimidine); 43.70 t ( $\left.\mathrm{C}-3^{\prime}, \mathrm{C}-5^{\prime}\right) ; 47.73 \mathrm{bt}, 42.96 \mathrm{bt}$ (C-2', C-6'). For $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}$ (269.3) calculated: $62.44 \% \mathrm{C}, 5.61 \% \mathrm{H}, 26.00 \% \mathrm{~N}$; found $62.35 \% \mathrm{C}$, $5.73 \% \mathrm{H}, 25.89 \% \mathrm{~N}$. Fumarate, m.p. $146-148{ }^{\circ} \mathrm{C}$ (ethanol). For $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}_{5}$ (385.4) calculated: $56.10 \% \mathrm{C}, 4.97 \% \mathrm{H}, 18.18 \% \mathrm{~N}$; found $56.29 \% \mathrm{C}, 5.11 \% \mathrm{H}, 18.33 \% \mathrm{~N}$.

## General Procedure for Preparation of Amines IIIa - IIId and $V a-V d$

A solution of the corresponding amide ( 22.5 mmol ) in tetrahydrofuran ( 60 ml ) was treated with $\mathrm{NaBH}_{4}(2.5 \mathrm{~g} ; 66 \mathrm{mmol})$, the mixture was cooled to $5^{\circ} \mathrm{C}$ and then treated under stirring and cooling in nitrogen atmosphere over 20 min with boron trifluoride etherate $(9.0 \mathrm{~g} ; 8.0 \mathrm{ml} ; 63 \mathrm{mmol})$. The mixture was stirred for 2 h at room temperature and then refluxed for 4 h . After cooling, the stirred mixture was slowly decomposed by addition of 50 ml dilute hydrochloric acid (1:1), refluxed for 2 h and evaporated in vacuo. The residue was dissolved in 20 ml ethanol, the mixture was made alkaline with a solution of $\mathrm{KOH}(25 \mathrm{~g})$ in ethanol ( 35 ml ) and refluxed for another 1 h . The solid was filtered off, washed with $2 \times 20 \mathrm{ml}$ ethanol and combined ethanolic solutions were evaporated in vacuo. The residue was distributed between toluene $(20 \mathrm{ml})$ and water $(20 \mathrm{ml})$. The toluene solution was evaporated in vacuo to dryness.

1-Phenyl-4-(3-pyridylmethyl)piperazine (IIIa). Reduction of 6.0 g amide IIa using the general procedure led to $3.3 \mathrm{~g}(52 \%)$ of the crude base IIIa, m.p. $70-75^{\circ} \mathrm{C}$ (the literature ${ }^{14}$ gave the value of
$74-76{ }^{\circ} \mathrm{C}$ ). Treatment of the methanolic solution of the base with a solution of HCl in ether afforded the dihydrochloride, m.p. $213-215^{\circ} \mathrm{C}$ (methanol-ether). IR spectrum: 694, 769 (5 adjacent Ar-H); $1491,1555,1595,3027$ (Ar); 2 017, 2 100, $2310\left(\mathrm{NH}^{+}\right)$. For $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{Cl}_{2} \mathrm{~N}_{3}$ (326.3) calculated: $58.90 \% \mathrm{C}, 6.49 \% \mathrm{H}, 21.74 \% \mathrm{Cl}, 12.88 \% \mathrm{~N}$; found: $58.68 \% \mathrm{C}, 6.64 \% \mathrm{H}, 22.02 \% \mathrm{Cl}, 12.87 \% \mathrm{~N}$.

1-(3-Chlorophenyl)-4-(3-pyridylmethyl)piperazine (IIIb). Reduction of the amide IIb ( 6.8 g ) gave 6.9 g crude base $I I I b$ which was transformed to the trihydrochloride monohydrate ( $5.2 \mathrm{~g}, 56 \%$ ), m.p. $126-135{ }^{\circ} \mathrm{C}$; analytical sample, m.p. $135-137{ }^{\circ} \mathrm{C}$ (ethanol-ether). IR spectrum: 693, 713, 779, 869 (3 and 1 adjacent and solitary Ar-H); 1 535, 1 591, 1 604, $3010,3045,3060$ (Ar); 1 930, 2040 , 2 070, $2110,2390\left(\mathrm{NH}^{+}\right) ; 3220\left(\mathrm{H}_{2} \mathrm{O}\right) .{ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CD}_{3} \mathrm{SOCD}_{3}\right): 9.34 \mathrm{bs}, 1 \mathrm{H}(\mathrm{H}-2) ; 9.02 \mathrm{bd}$, $1 \mathrm{H}(J=5.0, \mathrm{H}-6) ; 7.03 \mathrm{bm}, 1 \mathrm{H}(\mathrm{H}-4) ; 7.29 \mathrm{t}, 1 \mathrm{H}(J=5.0, \mathrm{H}-5) ; 7.00 \mathrm{~m}, 4 \mathrm{H}(\mathrm{H}-2, \mathrm{H}-4, \mathrm{H}-5, \mathrm{H}-6$ of $\left.3-\mathrm{ClC}_{6} \mathrm{H}_{4}\right) ; 4.78 \mathrm{bs}, 2 \mathrm{H}\left(\mathrm{CH}_{2}\right) ; 3.62 \mathrm{bm}, 4 \mathrm{H}\left(\mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}\right) ; 3.40 \mathrm{bm}, 4 \mathrm{H}\left(\mathrm{H}-2^{\prime}, \mathrm{H}-6^{\prime}\right)$. Mass spectrum, $m / z(\%): 287\left(\mathrm{M}^{+}, \mathrm{C}_{16} \mathrm{H}_{18} \mathrm{ClN}_{3}\right), 195,147,139,120$ (100), 92. For $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{Cl}_{4} \mathrm{~N}_{3}+\mathrm{H}_{2} \mathrm{O}$ (415.2) calculated: $46.28 \% \mathrm{C}, 5.58 \% \mathrm{H}, 34.16 \% \mathrm{Cl}, 10.12 \% \mathrm{~N}$; found: $46.08 \% \mathrm{C}, 5.62 \% \mathrm{H}, 34.44 \% \mathrm{Cl}$, 9.86\% N.

1-(3-Pyridylmethyl)-4-(3-trifluoromethylphenyl)piperazine (IIIc): Reduction of 6.7 g of the amide IIc gave 6.8 g of the crude base IIIc which was dissolved in ethanol ( 20 ml ) and transformed by treatment with HCl in ether to the dihydrochloride monohydrate ( $4.1 \mathrm{~g}, 40 \%$ ), m.p. $158-165{ }^{\circ} \mathrm{C}$; analytical sample, m.p. $166-168{ }^{\circ} \mathrm{C}$ (ethanol-ether). ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CD}_{3} \mathrm{SOCD}_{3}\right): 9.30 \mathrm{bs}, 1 \mathrm{H}$ (H-2); $9.05 \mathrm{bd}, 1 \mathrm{H}(J=5.0, \mathrm{H}-6) ; 8.94 \mathrm{bd}, 1 \mathrm{H}(J=8.5, \mathrm{H}-4) ; 8.16 \mathrm{dd}, 1 \mathrm{H}\left(J=8.5 ; J^{\prime}=5.0\right.$, H-5 $)$; $7.00-7.60 \mathrm{~m}, 4 \mathrm{H}\left(3-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right) ; 4.77 \mathrm{~s}, 2 \mathrm{H}\left(\mathrm{CH}_{2}\right) ; 3.62 \mathrm{bm}, 4 \mathrm{H}\left(\mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}\right) ; 3.40 \mathrm{bm}, 4 \mathrm{H}\left(\mathrm{H}-2^{\prime}\right.$, H-6'). Mass spectrum, $m / z(\%): 321\left(\mathrm{M}^{+}, \mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{~N}_{3}\right), 229,173,172,147,120$. For $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{~F}_{3} \mathrm{~N}_{3}$ $+\mathrm{H}_{2} \mathrm{O}(412.3)$ calculated: $49.52 \% \mathrm{C}, 5.38 \% \mathrm{H}, 17.20 \% \mathrm{Cl}, 13.83 \% \mathrm{~F}, 10.19 \% \mathrm{~N}$; found: $49.36 \% \mathrm{C}$, $5.32 \% \mathrm{H}, 17.18 \% \mathrm{Cl}, 13.61 \% \mathrm{~F}, 10.21 \% \mathrm{~N}$.

1-(4-Methoxyphenyl)-4-(3-pyridylmethyl)piperazine (IIId). Reduction of 6.7 g of the amide IId afforded $6.2 \mathrm{~g}(98 \%)$ of the crude oily base IIId, which was dissolved in ethanol and converted by treatment with a solution of 2.6 g maleic acid in ether to the hydrogen maleate monohydrate $(6.7 \mathrm{~g}$, $71 \%$ ), m.p. $108-110^{\circ} \mathrm{C}$; analytical sample, m.p. $111-113{ }^{\circ} \mathrm{C}$ (ethanol-ether). Mass spectrum, $\mathrm{m} / \mathrm{z}$ (\%): $283\left(\mathrm{M}^{+}, \mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}, 75\right), 191$ (23), 162 (15), 150 (18), 147 (24), 136 (40), 135 (38), 120 (100), 92 (58), 56 (73). For $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{5}+\mathrm{H}_{2} \mathrm{O}$ (417.5) calculated: $60.42 \% \mathrm{C}, 6.51 \% \mathrm{H}, 10.07 \% \mathrm{~N}$; found: $60.53 \% \mathrm{C}, 6.31 \% \mathrm{H}, 9.87 \% \mathrm{~N}$.

1-Benzyl-4-(3-pyridylmethyl)piperazine (Va). Reduction of 6.3 g of the amide IVa gave 6.0 g ( $98 \%$ ) of the crude oily base $V a$ which was dissolved in methanol and converted by treatment with a solution of maleic acid ( 5.1 g ) in methanol to dihydrogen maleate monohydrate ( $8.4 \mathrm{~g}, 72 \%$ ), m.p. $195-197{ }^{\circ} \mathrm{C}$; Analytical sample, m.p. $197-199{ }^{\circ} \mathrm{C}$ (methanol). ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CD}_{3} \mathrm{SOCD}_{3}\right)$ : $9.24 \mathrm{~d}, 1 \mathrm{H}(J=1.5, \mathrm{H}-2) ; 8.98 \mathrm{dd}, 1 \mathrm{H}\left(J=1.5, J^{\prime}=5.5, \mathrm{H}-6\right) ; 8.75 \mathrm{dd}, 1 \mathrm{H}\left(J=1.5, J^{\prime}=8.2\right.$, $\mathrm{H}-4) ; 8.04 \mathrm{dd}, 1 \mathrm{H}\left(J=5.5, J^{\prime}=8.2, \mathrm{H}-5\right) ; 7.35 \mathrm{~m}, 5 \mathrm{H}$ (Ar-H of benzyl); $6.91 \mathrm{~s}, 4 \mathrm{H}(\mathrm{CH}=$ of maleic acid); $6.14 \mathrm{bs}, 4 \mathrm{H}(\mathrm{COOH}) ; 4.71 \mathrm{~s}, 2 \mathrm{H}\left(\mathrm{CH}_{2}\right.$-pyridine); $4.54 \mathrm{~s}, 2 \mathrm{H}\left(\mathrm{CH}_{2}\right.$ of benzyl); 3.58 m , $4 \mathrm{H}\left(\mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}\right) ; 3.29 \mathrm{~m}, 4 \mathrm{H}\left(\mathrm{H}-2^{\prime}, \mathrm{H}-6^{\prime}\right)$. For $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{8}+\mathrm{H}_{2} \mathrm{O}(517.5)$ calculated: $58.01 \% \mathrm{C}, 6.04 \% \mathrm{H}$, $8.12 \% \mathrm{~N}$; found: $58.33 \% \mathrm{C}, 6.07 \% \mathrm{H}, 8.25 \% \mathrm{~N}$.

1-(4-Fluorobenzyl)-4-(3-pyridylmethyl)piperazine ( Vb ). Reduction of 6.7 g of the amide $I V \mathrm{~V}$ resulted in $5.6 \mathrm{~g}(87 \%)$ of the crude base $V b .{ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right): 8.52 \mathrm{~m}, 2 \mathrm{H}(\mathrm{H}-2) ; 7.69 \mathrm{bd}$, $1 \mathrm{H}(\mathrm{H}-4), 7.30 \mathrm{~m}, 3 \mathrm{H}\left(\mathrm{H}-5 ; \mathrm{H}-2\right.$ and $\mathrm{H}-6$ of $\left.4-\mathrm{FC}_{6} \mathrm{H}_{4}\right) ; 7.01 \mathrm{t}, 2 \mathrm{H}((J(\mathrm{HH})=J(\mathrm{HF})=9.0$, H-3 and $\mathrm{H}-5$ of $\left.4-\mathrm{FC}_{6} \mathrm{H}_{5}\right) ; 3.57 \mathrm{~s}, 4 \mathrm{H}\left(2 \times \mathrm{CH}_{2}\right) ; 2.58 \mathrm{~s}, 8 \mathrm{H}\left(\mathrm{H}-2^{\prime}, \mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}, \mathrm{H}-6^{\prime}\right)$. Mass spectrum, $\mathrm{m} / \mathrm{z}$ (\%): $285\left(\mathrm{M}^{+}, \mathrm{C}_{17} \mathrm{H}_{20} \mathrm{FN}_{3}, 5\right), 193$ (10), 176 (20), 109 (100), 92 (46), 72 (45). Dihydrogen maleate, m.p. $189-191^{\circ} \mathrm{C}$ (aqueous ethanol). For $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{FN}_{3} \mathrm{O}_{8}+\mathrm{H}_{2} \mathrm{O}$ (535.5) calculated: $56.07 \% \mathrm{C}, 5.65 \% \mathrm{H}$, $3.54 \% \mathrm{~F}, 7.85 \% \mathrm{~N}$; found: $55.94 \% \mathrm{C}, 5.51 \% \mathrm{H}, 3.27 \% \mathrm{~F}, 7.54 \% \mathrm{~N}$.

1-Benzhydryl-4-(3-pyridylmethyl)piperazine (Vc). Reduction of 8.1 g of the amide $I V c$ afforded $6.5 \mathrm{~g}(84 \%)$ of the crude crystalline base $V c$ (m.p. $90-95^{\circ} \mathrm{C}$ ) which was transformed to the hydro-
chloride, m.p. $228-230{ }^{\circ} \mathrm{C}$ (ethanol). IR spectrum: 690, 710, 863 ( 5 and 3 adjacent and solitary Ar-H); 1 497, 1 552, 3 025, 3 045, 3095 (Ar); 3 360, 3 420, 3490 (OH, NH); 2 400, 2 500, 2622 $\left(\mathrm{NH}^{+}\right) .{ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CD}_{3} \mathrm{SOCD}_{3}\right): 9.20 \mathrm{bs}, 1 \mathrm{H}(\mathrm{H}-2) ; 8.96 \mathrm{bd}, 1 \mathrm{H}(J=5.0, \mathrm{H}-6) ; 8.80 \mathrm{bd}, 1 \mathrm{H}$ $(J=8.5, \mathrm{H}-4) ; 8.05 \mathrm{~m}, 1 \mathrm{H}(\mathrm{H}-5) ; 7.95 \mathrm{~m}, 7.40 \mathrm{~m}, 10 \mathrm{H}\left(2 \times \mathrm{C}_{6} \mathrm{H}_{5}\right) ; 5.90 \mathrm{bs}, 1 \mathrm{H}(\mathrm{CH}) ; 4.70 \mathrm{~s}, 2 \mathrm{H}$ $\left(\mathrm{CH}_{2}\right) ; 3.64 \mathrm{bm}, 4 \mathrm{H}\left(\mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}\right) ; 3.35 \mathrm{bm}, 4 \mathrm{H}\left(\mathrm{H}-2^{\prime}, \mathrm{H}-6^{\prime}\right)$. Mass spectrum, $m / z(\%): 343\left(\mathrm{M}^{+}\right.$, $\left.\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{3}, 4\right), 266$ (2), 251 (9), 176 (98), 167 (66), 92 (100). For $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{Cl}_{3} \mathrm{~N}_{3}+\mathrm{H}_{2} \mathrm{O}$ (470.9) calculated: $58.67 \% \mathrm{C}, 6.42 \% \mathrm{H}, 22.59 \% \mathrm{Cl}, 8.92 \% \mathrm{~N}$; found : $58.45 \% \mathrm{C}, 6.18 \% \mathrm{H}, 22.59 \% \mathrm{Cl}, 8.93 \% \mathrm{~N}$.

1-(4,4'-Difluorobenzhydryl)-4-(3-pyridylmethyl)piperazine (Vd). Reduction of 8.6 g of the amide $I V d$ gave $7.8 \mathrm{~g}(91 \%)$ of the crude crystalline base $V c$, m.p. $114-116^{\circ} \mathrm{C}$ (ether-light petroleum). ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right): 8.54 \mathrm{~d}, 1 \mathrm{H}(J=2.0, \mathrm{H}-2) ; 8.50 \mathrm{dd}, 1 \mathrm{H}\left(J=2.0, J^{\prime}=5.0, \mathrm{H}-6\right) ; 7.65 \mathrm{bd}$, $1 \mathrm{H}(J=8.0, \mathrm{H}-4) ; 7.30 \mathrm{~m}, 5 \mathrm{H}\left(\mathrm{H}-5,2 \times \mathrm{H}-2\right.$ and $\mathrm{H}-6$ of $\left.4-\mathrm{FC}_{6} \mathrm{H}_{4}\right) ; 6.95 \mathrm{t}, 4 \mathrm{H}(J(\mathrm{HH})=$ $J(\mathrm{HF})=9.0,2 \times \mathrm{H}-3$ and $\mathrm{H}-5$ of $\left.4-\mathrm{FC}_{6} \mathrm{H}_{4}\right) ; 4.22 \mathrm{~s}, 1 \mathrm{H}(\mathrm{CH}) ; 3.52 \mathrm{~s}, 2 \mathrm{H}\left(\mathrm{CH}_{2}\right) ; 2.43 \mathrm{bs}, 8 \mathrm{H}\left(\mathrm{H}-2^{\prime}\right.$, H-3', H-5', H-6'). ${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right): 161.87 \mathrm{~s}\left(\mathrm{~J}(\mathrm{~F}, \mathrm{C})=244,2 \times \mathrm{C}-4\right.$ from $\left.4-\mathrm{FC}_{6} \mathrm{H}_{4}\right)$; $150.59 \mathrm{~d}(\mathrm{C}-2) ; 148.64 \mathrm{~d},(\mathrm{C}-6) ; 138.19 \mathrm{~s}\left(2 \times \mathrm{C}-1\right.$ from $\left.4-\mathrm{FC}_{6} \mathrm{H}_{4}\right) ; 136.69 \mathrm{~d}(\mathrm{C}-4) ; 133.56 \mathrm{~s}(\mathrm{C}-3)$; $129.30 \mathrm{~d}\left(J(\mathrm{FC})=7.5,2 \times \mathrm{C}-2\right.$ and $\mathrm{C}-6$ from $\left.4-\mathrm{FC}_{6} \mathrm{H}_{4}\right) ; 123.25 \mathrm{~d}(\mathrm{C}-5) ; 115.37 \mathrm{~d}(J(\mathrm{FC})=20.7,2 \times \mathrm{C}-3$ and $\mathrm{C}-5$ from $\left.4-\mathrm{FC}_{6} \mathrm{H}_{4}\right) ; 74.40 \mathrm{~d}\left(\mathrm{Ar}_{2} \mathrm{CH}\right) ; 60.13 \mathrm{t}\left(\mathrm{CH}_{2}\right) ; 53.26 \mathrm{t}\left(\mathrm{C}-2^{\prime}\right.$ and $\left.\mathrm{C}-6^{\prime}\right) ; 51.69 \mathrm{t}\left(\mathrm{C}-3^{\prime}\right.$ and C-5 $5^{\prime}$ ). Trihydrochloride hemihydrate, m.p. $114-116^{\circ} \mathrm{C}$ (ethanol-ether). IR spectrum: 690, 783 ( 3 adjacent Ar-H); 825 (2 adjacent Ar-H); 860 (solitary Ar-H); 1231 (Ar-F); 1 510, 1 550, 1 603, 3 000, 3 045, $3100(\mathrm{Ar}) ; 1637\left(\mathrm{H}_{2} \mathrm{O}\right) ; 3420,3485\left(\mathrm{OH}, \mathrm{H}_{2} \mathrm{O}\right) ; 2090,2400,2495,2620\left(\mathrm{NH}^{+}\right) .{ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CD}_{3} \mathrm{SOCD}_{3}\right): 9.00 \mathrm{bd}, 1 \mathrm{H}(\mathrm{H}-2) ; 8.88 \mathrm{~d}, 1 \mathrm{H}(\mathrm{H}-6) ; 8.00 \mathrm{~m}, 6 \mathrm{H}(2 \times \mathrm{H}-2$ and H-6 from $4-\mathrm{FC}_{6} \mathrm{H}_{4}, \mathrm{H}-4$ and $\left.\mathrm{H}-5\right) ; 7.30 \mathrm{t}, 4 \mathrm{H}\left(2 \times \mathrm{H}-3\right.$ and $\mathrm{H}-5$ from $\left.4-\mathrm{FC}_{6} \mathrm{H}_{4}\right) ; 5.98 \mathrm{bs}, 1 \mathrm{H}(\mathrm{CH}) ; 4.75 \mathrm{~s}$, $2 \mathrm{H}\left(\mathrm{CH}_{2}\right) ; 3.64 \mathrm{bm}, 4 \mathrm{H}\left(\mathrm{H}-3^{\prime}\right.$ and $\left.\mathrm{H}-5^{\prime}\right) ; 3.35 \mathrm{bm}, 4 \mathrm{H}\left(\mathrm{H}-2^{\prime}\right.$ and $\left.\mathrm{H}-6^{\prime}\right)$. Mass spectrum, $m / z(\%)$ : $379\left(\mathrm{M}^{+}, \mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~F}_{2} \mathrm{~N}_{3}\right), 287,244,203,176$ (100), 133, 92. For $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{Cl}_{3} \mathrm{~F}_{2} \mathrm{~N}_{3}+0.5 \mathrm{H}_{2} \mathrm{O}$ (497.8) calculated: $55.49 \%$ C, $5.46 \% \mathrm{H}, 21.37 \% \mathrm{Cl}, 7.63 \% \mathrm{~F}, 8.44 \% \mathrm{~N}$; found: $55.33 \% \mathrm{C}, 5.25 \% \mathrm{H}, 20.93 \% \mathrm{Cl}$, $7.69 \% \mathrm{~F}, 8.51 \% \mathrm{~N}$.

## 1-(3-Pyridylmethyl)-4-(2-pyrimidinyl)piperazine (Ve)

A solution of 1-(2-pyrimidinyl)piperazine ${ }^{3}(3 \mathrm{~g}, 44.5 \mathrm{mmol})$ and $4.6 \mathrm{~g}(6.3 \mathrm{ml}, 45 \mathrm{mmol})$ of triethylamine in ethanol ( 60 ml ) was treated over 30 min under stirring with a suspension of 3 -(chloromethyl)pyridine hydrochloride ${ }^{4}(3 \mathrm{~g}, 44.5 \mathrm{mmol})$ in ethanol $(40 \mathrm{ml})$. The mixture was stirred and refluxed for 6 h , evaporated in vacuo to dryness, the residue was dissolved in chloroform ( 100 ml ) and made alkaline with a solution of $\mathrm{NH}_{3}$ in chloroform. The separated $\mathrm{NH}_{4} \mathrm{Cl}$ was filtered off and evaporation of the filtrate gave $8.8 \mathrm{~g}(76 \%)$ crude product melting at $100-104{ }^{\circ} \mathrm{C}$; analytical sample, m.p. $102-104{ }^{\circ} \mathrm{C}$ (cyclohexane). IR spectrum: 718, 770, 792, 811 ( 3 adjacent Ar-H); 850 (solitary Ar-H); $1480,1511,1540,1588,3028$ (heterocyclic ring); $2760,2775\left(\mathrm{~N}-\mathrm{CH}_{2}\right)$. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right): 8.60 \mathrm{bs}, 1 \mathrm{H}(\mathrm{H}-2) ; 8.55 \mathrm{bd}, 1 \mathrm{H}(\mathrm{H}-6) ; 8.30 \mathrm{~d}, 2 \mathrm{H}(J=5.0, \mathrm{H}-3$ and $\mathrm{H}-5$ of pyrimidine); $7.28 \mathrm{bd}, 1 \mathrm{H}(\mathrm{H}-5) ; 6.50 \mathrm{t}, 1 \mathrm{H}\left(J=5.0, \mathrm{H}-4\right.$ of pyrimidine); $3.84 \mathrm{bt}, 4 \mathrm{H}\left(\mathrm{H}-3^{\prime}\right.$ and $\left.\mathrm{H}-5^{\prime}\right) ; 3.58 \mathrm{~s}, 2 \mathrm{H}\left(\mathrm{CH}_{2}\right) ; 2.51 \mathrm{bt}, 4 \mathrm{H}\left(\mathrm{H}-2^{\prime}\right.$ and $\mathrm{H}-6^{\prime} .{ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right): 161.72 \mathrm{~s}$ (C-1 of pyrimidine); 157.68 d (C-3 and C-5 of pyrimidine); $150.51 \mathrm{~d}(\mathrm{C}-6) ; 148.79 \mathrm{~d}(\mathrm{C}-2) ; 136.69 \mathrm{~d}$ (C-4); $133.48 \mathrm{~s}(\mathrm{C}-3) ; 123.32 \mathrm{~d}(\mathrm{C}-5) ; 109.88 \mathrm{~d}\left(\mathrm{C}-4\right.$ of pyrimidine); $60.28 \mathrm{t}\left(\mathrm{CH}_{2}\right) ; 52.96 \mathrm{t}\left(\mathrm{C}-2^{\prime}\right.$ and C-6'); 43.62 t (C-3' and $\mathrm{C}-5^{\prime}$ ). For $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{5}$ (255.3) calculated: $65.85 \% \mathrm{C}, 6.71 \% \mathrm{H}, 27.43 \% \mathrm{~N}$; found: $65.85 \% \mathrm{C}, 6.84 \% \mathrm{H}, 27.25 \% \mathrm{~N}$.

Dihydrogen maleate, m.p. $148-150{ }^{\circ} \mathrm{C}$ (ethanol). For $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{8}$ (487.5) calculated: $54.21 \% \mathrm{C}$, $5.17 \% \mathrm{H}, 14.37 \% \mathrm{~N}$; found: $53.99 \% \mathrm{C}, 5.26 \% \mathrm{H}, 14.27 \% \mathrm{~N}$.

3-(4-(3-Pyridylmethyl)-1-piperazinyl)propionamide (Vf)
A solution of 1-(3-pyridylmethyl)piperazine ${ }^{5}(12.3 \mathrm{~g}, 70 \mathrm{mmol})$ in ethanol ( 20 ml ) was treated under stirring with a solution of acrylamide ( $5.0 \mathrm{~g}, 70 \mathrm{mmol}$ ) in ethanol ( 20 ml ), the mixture was refluxed for 12 h , cooled to room temperature and treated with a solution of maleic acid ( $24.4 \mathrm{~g}, 0.21 \mathrm{~mol}$ ) in ethanol ( 150 ml ). The separated crystalline trihydrogen maleate was filtered, washed with ethanol ( 50 ml ) and dried; yield $34.2 \mathrm{~g}(82 \%)$, m.p. $144-146{ }^{\circ} \mathrm{C}$; analytical sample, m.p. $150-152{ }^{\circ} \mathrm{C}$ (aqueous ethanol-ether). ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CD}_{3} \mathrm{SOCD}_{3}\right): 8.60 \mathrm{bm}, 2 \mathrm{H}(\mathrm{H}-2$ and $\mathrm{H}-6), 7.82 \mathrm{bd}, \mathrm{H}(\mathrm{H}-4)$, $7.45 \mathrm{bm}, 1 \mathrm{H}(\mathrm{H}-5), 6.23 \mathrm{~s}, 6 \mathrm{H}\left(=\mathrm{CH}-\right.$ of maleate), $3.72 \mathrm{~s}, 2 \mathrm{H}$ (pyridyl- $\mathrm{CH}_{2}$ ). Mass spectrum, $\mathrm{m} / \mathrm{z}$ (\%): $249\left(\mathrm{M}^{+}+1, \mathrm{C}_{13} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}\right), 177,135,92,56,44$. For $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{13}$ (596.6) calculated: $50.33 \% \mathrm{C}$, $5.41 \% \mathrm{H}, 9.39 \% \mathrm{~N}$; found: $50.36 \% \mathrm{C}, 5.55 \% \mathrm{H}, 9.19 \% \mathrm{~N}$.

## 1-(3-Pyridylacetyl)-4-(2-pyrimidinyl)piperazine (VIe)

A solution of 2-(3-pyridyl)acetic $\operatorname{acid}^{6}(5.5 \mathrm{~g}, 40 \mathrm{mmol})$ in 70 ml dimethylformamide was treated over 20 min with $1,1^{\prime}$-carbonyldiimidazole ( $7.0 \mathrm{~g}, 45 \mathrm{mmol}$ ), added in parts, which was followed by 1-(2-pyrimidinyl)piperazine ${ }^{3}(6.6 \mathrm{~g}, 40 \mathrm{mmol})$ in $N, N$-dimethylformamide ( 40 ml ) and reaction mixture was stirred for 16 h at room temperature. The solution was evaporated in vacuo to dryness, the residue was mixed with ethanol ( 10 ml ) and the crystalline solid was filtered; $7.1 \mathrm{~g}(63 \%)$ amide VIe, m.p. $127-133{ }^{\circ} \mathrm{C}$; analytical sample, m.p. $133-135{ }^{\circ} \mathrm{C}$ (ethanol). ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right): 8.52 \mathrm{bm}$, $2 \mathrm{H}(\mathrm{H}-2$ and $\mathrm{H}-6) ; 8.32 \mathrm{~d}, 2 \mathrm{H}(J=5.0, \mathrm{H}-3$ and $\mathrm{H}-5$ of pyrimidine); $7.65 \mathrm{bd}, 1 \mathrm{H}(J=7.0, \mathrm{H}-4)$; $7.28 \mathrm{dd}\left(J=5.0, J^{\prime}=7.0, \mathrm{H}-5\right) ; 6.56 \mathrm{t}, 1 \mathrm{H}(J=5.0, \mathrm{H}-4$ of pyrimidine $) ; 3.50-3.90 \mathrm{bm}, 10 \mathrm{H}\left(\mathrm{H}-2^{\prime}\right.$, $\mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}, \mathrm{H}-6^{\prime}$ and $\left.\mathrm{CH}_{2} \mathrm{CO}\right) .{ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right): 168.74 \mathrm{~s}(\mathrm{CO}), 161.49 \mathrm{~s}(\mathrm{C}-1$ of pyrimidine), 157.83 d (C-3 and C-5 of pyrimidine), $150.06 \mathrm{~d}(\mathrm{C}-6), 148.42 \mathrm{~d}(\mathrm{C}-2), 136.62 \mathrm{~d}(\mathrm{C}-4)$, $130.72 \mathrm{~s}(\mathrm{C}-3), 123.55 \mathrm{~d}(\mathrm{C}-5), 110.62 \mathrm{~d}\left(\mathrm{C}-4\right.$ of pyrimidine), $45.79 \mathrm{t}\left(\mathrm{CH}_{2}\right), 43.62 \mathrm{t}\left(\mathrm{C}-2^{\prime}\right.$ and $\left.\mathrm{C}-6^{\prime}\right)$, 41.75 and 37.72 t (C-3' and C-5'). IR spectrum: 709, 767, 793, 814 ( 3 adjacent ArH); 850 (solitary ArH); $1480,1499,1542,1581,3000,3020,3045$ (Ar); 1641 ( $\mathrm{RCONR}_{2}$ ). UV spectrum: 203 (5.16), 241.5 (5.43), 303 (4.33). For $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}$ (283.3) calculated: $63.58 \% \mathrm{C}, 6.05 \% \mathrm{H}, 24.72 \% \mathrm{~N}$; found: $63.30 \% \mathrm{C}, 6.03 \% \mathrm{H}, 24.52 \% \mathrm{~N}$.

Hydrogen maleate, m.p. $132-134{ }^{\circ} \mathrm{C}$ (ethanol). For $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{5}$ (399.4) calculated: 57.13\% C, $5.30 \% \mathrm{H}, 17.54 \% \mathrm{~N}$; found $57.01 \% \mathrm{C}, 5.35 \% \mathrm{H}, 17.68 \% \mathrm{~N}$.

## 3-(4-(3-Pyridylacetyl)-1-piperazinyl)propionamide (VIf)

A similar reaction of 3-(1-piperazinyl)propionamide ${ }^{7}(4.5 \mathrm{~g}, 29 \mathrm{mmol})$ with 2-(3-pyridyl)acetic acid ${ }^{6}$ $(4.0 \mathrm{~g}, 29 \mathrm{mmol})$ gave $5.2 \mathrm{~g}(66 \%)$ of the base VIf, m.p. $156-163^{\circ} \mathrm{C}$; analytical sample, m.p. $166-168{ }^{\circ} \mathrm{C}$ (ethanol-hexane). ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right): 8.44 \mathrm{~m}, 2 \mathrm{H}(\mathrm{H}-2$ and $\mathrm{H}-6) ; 7.64 \mathrm{dt}, 1 \mathrm{H}\left(J=7.0, J^{\prime}=\right.$ $2.0, \mathrm{H}-4) ; 7.38 \mathrm{bs}, 1 \mathrm{H}$ and $6.80 \mathrm{bs}, 1 \mathrm{H}\left(\mathrm{CONH}_{2}\right) ; 7.35 \mathrm{dd}, 1 \mathrm{H}(J=7.0,5.0, \mathrm{H}-5) ; 3.77 \mathrm{~s}, 2 \mathrm{H}$ $\left(\mathrm{CH}_{2} \mathrm{CO}\right) ; 3.50 \mathrm{bt}, 4 \mathrm{H}\left(\mathrm{H}-2^{\prime}\right.$ and $\left.\mathrm{H}-6^{\prime}\right) ; 2.54 \mathrm{t}, 2 \mathrm{H}\left(J=7.0, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right) ; 2.36 \mathrm{bt}, 4 \mathrm{H}\left(\mathrm{H}-3^{\prime}\right.$ and $\left.\mathrm{H}-5^{\prime}\right) ; 2.22 \mathrm{t}, 2 \mathrm{H}\left(J=7.0, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right): 173.22 \mathrm{~s}(\mathrm{CO}), 168.29 \mathrm{~s}$ $\left(\mathrm{CH}_{2} \mathrm{CO}\right.$-piperazine), $150.36 \mathrm{~d}(\mathrm{C}-6), 147.52 \mathrm{~d}(\mathrm{C}-2), 136.92 \mathrm{~d}(\mathrm{C}-4), 131.84 \mathrm{~s}(\mathrm{C}-3), 123.25 \mathrm{~d}(\mathrm{C}-5)$, $53.78 \mathrm{t}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CONH}_{2}\right), 52.66 \mathrm{t}$ and $52.14 \mathrm{t}\left(\mathrm{C}-3^{\prime}\right.$ and $\left.\mathrm{C}-5^{\prime}\right), 45.19 \mathrm{t}\left(\mathrm{C}-2^{\prime}\right.$ and $\left.\mathrm{C}-6^{\prime}\right), 36.23 \mathrm{t}$ $\left(\mathrm{CH}_{2} \mathrm{CO}\right.$-piperazine), $32.79 \mathrm{t}\left(\mathrm{CH}_{2} \mathrm{CONH}_{2}\right)$. For $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2}(276.3)$ calculated: $60.85 \% \mathrm{C}, 7.30 \% \mathrm{H}$, $20.28 \% \mathrm{~N}$; found: $60.59 \% \mathrm{C}, 7.34 \% \mathrm{H}, 20.26 \% \mathrm{~N}$.

## 3-(4-Nicotinoyl-1-piperazinyl)propionamide (IVf)

Reaction of 3-(1-piperazinyl)propionamide ${ }^{7}(4.7 \mathrm{~g}, 30 \mathrm{mmol})$ with nicotinic acid ( $3.7 \mathrm{~g}, 30 \mathrm{mmol}$ ) and $1,1^{\prime}$-carbonyldiimidazole ( $5.6 \mathrm{~g}, 35 \mathrm{mmol}$ ), carried out similarly like in the two foregoing cases, afforded $5.2 \mathrm{~g}(67 \%)$ of the base $I V f$, m.p. $171-175{ }^{\circ} \mathrm{C}$; analytical sample, m.p. $173-175{ }^{\circ} \mathrm{C}$
(ethanol-hexane). ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right): 8.70 \mathrm{bm}, 2 \mathrm{H}(\mathrm{H}-2$ and $\mathrm{H}-6) ; 7.80 \mathrm{bd}, 1 \mathrm{H}(J=7.0$, $\mathrm{H}-4) ; 7.30 \mathrm{dd}, 1 \mathrm{H}\left(J=7.0, J^{\prime}=5.0, \mathrm{H}-5\right) ; 7.20 \mathrm{bs}$ and $5.75 \mathrm{bs}, 2 \times 1 \mathrm{H}\left(\mathrm{NH}_{2}\right) ; 3.62 \mathrm{bt}, 4 \mathrm{H}\left(\mathrm{H}-2^{\prime}\right.$ and H-6'); $2.70 \mathrm{t}, 2 \mathrm{H}\left(J=7.0, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CONH}_{2}\right) ; 2.50 \mathrm{bt}, 4 \mathrm{H}\left(\mathrm{H}-3^{\prime}\right.$ and $\left.\mathrm{H}-5^{\prime}\right) ; 2.40 \mathrm{t}, 2 \mathrm{H}(J=7.0$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CONH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right): 174.79 \mathrm{~s}\left(\mathrm{CONH}_{2}\right), 167.62 \mathrm{~s}(\mathrm{CO}), 150.89 \mathrm{~d}(\mathrm{C}-6)$, $147.90 \mathrm{~d}(\mathrm{C}-2), 134.98 \mathrm{~d}(\mathrm{C}-4), 131.31 \mathrm{~s}(\mathrm{C}-3), 123.47 \mathrm{~d}(\mathrm{C}-5), 53.63 \mathrm{t}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CONH}_{2}\right), 52.59 \mathrm{t}$ ( $\mathrm{C}-3^{\prime}$ and $\mathrm{C}-5^{\prime}$ ), 47.23 t and $42.26 \mathrm{t}\left(\mathrm{C}-2^{\prime}\right.$ a $\left.\mathrm{C}-6^{\prime}\right), 32.27 \mathrm{t}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CONH}_{2}\right)$. IR spectrum: 711, 821 (3 adjacent ArH); 898 (solitary ArH); 1 480, 1 490, 1 568, 1 590, 3005 (Ar); 1616 (ArCON); 1684 $\left(\mathrm{RCONH}_{2}\right) ; 2820\left(\mathrm{NCH}_{2}\right) ; 3$ 165, $3330\left(\mathrm{NH}_{2}\right)$. UV spectrum: 253 (4.58), 259 (4.58). For $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}$ (262.3) calculated: $59.52 \% \mathrm{C}, 6.92 \% \mathrm{H}, 21.36 \% \mathrm{~N}$; found: $59.38 \% \mathrm{C}, 6.94 \% \mathrm{H}, 21.39 \% \mathrm{~N}$.

Hydrogen maleate, m.p. $157-159{ }^{\circ} \mathrm{C}$ (ethanol). For $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{6}$ (378.4) calculated: 53.96\% C, $5.86 \% \mathrm{H}, 14.81 \% \mathrm{~N}$; found: $53.85 \% \mathrm{C}, 5.87 \% \mathrm{H}, 14.74 \% \mathrm{~N}$.

The authors thank the following colleagues at the Research Institute for Pharmacy and Biochemistry in Prague for co-operation: Mr M. Cech, Mrs R. Svatosova and Mrs A. Svatonova (elemental analysis), Dr E. Svatek and Mrs A. Hradkova (IR spectra), Dr J. Holubek (NMR spectra), Dr M. Ryska and Mrs O. Matousova (mass spectra), Dr H. Blehova and Mrs L. Horakova (animal pharmacology).

## REFERENCES

1. Anonym: Drugs Future 9, 30 (1984); 14, 88 (1989); 18, 88 (1993).
2. Kmonicek V., Svatek E., Holubek J., Ryska M., Valchar M., Protiva M.: Collect. Czech. Chem. Commun. 55, 1817 (1990).
3. Howard K. L., Steward H. W., Conroy E. A., Denton J. J.: J. Org. Chem. 18, 148 (1953).
4. Vejdelek Z., Protiva M.: Chem. Listy 45, 451 (1951).
5. Rondahl L.: Acta Pharm. Suec. 17, 292 (1980).
6. Malan R. L., Dean M. P.: J. Am. Chem. Soc. 69, 1797 (1947).
7. Protiva M., Jilek J., Cervena I., Pomykacek J., Bartl V., Dlabac A., Valchar M., Metysova J., Holubek J., Svatek E.: Collect. Czech. Chem. Commun. 51, 2598 (1986).
8. Pollard C. B., Wicker T. H. jr.: J. Am. Chem. Soc. 76, 1853 (1954).
9. Kopicova Z., Nemec J., Protiva M.: Collect. Czech. Chem. Commun. 41, 459 (1976).
10. Valenta V., Vlkova M., Holubek J., Svatek E., Metysova J., Protiva M.: Collect. Czech. Chem. Commun. 55, 797 (1990).
11. Bartl V., Dlabac A., Protiva M.: Collect. Czech. Chem. Commun. 45, 3182 (1980).
12. Zikolova S., Konslantinova R.: Farmatsia (Sofia) 25, 1 (1978); Chem. Abstr. 84, 59388 (1976).
13. Donnert D., Schweer K.H.: J. Labelled Compd. Radiopharm. 9, 405 (1973); Chem. Abstr. 80, 37072 (1974).
14. Giannini M. (Malesci S.a S., Istituto Farmacobiologico): Belg. 820 242; Chem. Abstr. 84, 59553 (1976).

Translated by M. Protiva.

